%I #7 Jul 20 2019 08:03:57
%S 1,2,1,2,1,1,2,2,2,1,2,1,1,1,1,2,2,1,1,2,1,2,1,2,1,2,1,1,2,2,2,2,2,2,
%T 2,1,2,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,1,2,1,2,1,1,1,1,1,2,1,1,2,2,
%U 2,2,1,1,1,1,2,2,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1
%N Triangle T(n,m) read by rows: the denominator of the coefficient [x^m] of the inverse Euler polynomial E^{-1}(n,x), 0<=m<=n.
%C As commented in A178395, the triangle of fractions of coefficients of the inverse Euler polynomials starts in row n=0 with column 0<=m<=n as:
%C 1;
%C 1/2,1;
%C 1/2,1,1;
%C 1/2,3/2,3/2,1;
%C 1/2,2,3,2,1;
%C 1/2,5/2,5,5,5/2,1;
%C 1/2,3,15/2,10,15/2,3,1;
%C 1/2,7/2,21/2,35/2,35/2,21/2,7/2,1;
%C 1/2,4,14,28,35,28,14,4,1;
%C 1/2,9/2,18,42,63,63,42,18,9/2,1;
%C 1/2,5,45/2,60,105,126,105,60,45/2,5,1;
%C Partial row sums (skipping the left column) in this triangle are sum_{m>=1} [x^m] E^{-1}(n,x) = 2^(n-1).
%C T(n,m) is the denominator of the fraction in row n and column m.
%e 1;
%e 2,1;
%e 2,1,1;
%e 2,2,2,1;
%e 2,1,1,1,1;
%e 2,2,1,1,2,1;
%e 2,1,2,1,2,1,1;
%e 2,2,2,2,2,2,2,1;
%e 2,1,1,1,1,1,1,1,1;
%e 2,2,1,1,1,1,1,1,2,1;
%e 2,1,2,1,1,1,1,1,2,1,1;
%e 2,2,2,2,1,1,1,1,2,2,2,1;
%e 2,1,1,1,2,1,1,1,2,1,1,1,1;
%e 2,2,1,1,2,2,1,1,2,2,1,1,2,1;
%e 2,1,2,1,2,1,2,1,2,1,2,1,2,1,1;
%t (* The function RiordanArray is defined in A256893. *)
%t rows = 15;
%t R = RiordanArray[(1 + E^#)/2&, #&, rows, True];
%t R // Flatten // Denominator (* _Jean-François Alcover_, Jul 20 2019 *)
%Y Cf. A178395 (numerators)
%K nonn,tabl,frac
%O 0,2
%A _Paul Curtz_, May 28 2010