login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n where no pair of adjacent part sizes is relatively prime.
27

%I #17 Nov 20 2019 09:34:01

%S 1,1,1,1,2,1,5,1,8,4,17,3,38,5,67,25,132,27,290,54,547,163,1086,255,

%T 2277,530,4416,1267,8850,2314,18151,4737,35799,10499,71776,20501,

%U 145471,41934,289695,89030,581117,178424,1171545,365619,2342563,761051,4699711

%N Number of compositions (ordered partitions) of n where no pair of adjacent part sizes is relatively prime.

%C A178472(n) is a lower bound for a(n). This bound is exact for n = 2..10 and 12, but falls behind thereafter.

%C a(0) = 1 vacuously for the empty composition. One could take a(1) = 0, on the theory that each composition is followed by infinitely many 0's, and thus the 1 is not relatively prime to its neighbor; but this definition seems simpler.

%H Alois P. Heinz, <a href="/A178470/b178470.txt">Table of n, a(n) for n = 0..1000</a>

%e The three compositions for 11 are <11>, <2,6,3> and <3,6,2>.

%e From _Gus Wiseman_, Nov 19 2019: (Start)

%e The a(1) = 1 through a(11) = 3 compositions (A = 10, B = 11):

%e 1 2 3 4 5 6 7 8 9 A B

%e 22 24 26 36 28 263

%e 33 44 63 46 362

%e 42 62 333 55

%e 222 224 64

%e 242 82

%e 422 226

%e 2222 244

%e 262

%e 424

%e 442

%e 622

%e 2224

%e 2242

%e 2422

%e 4222

%e 22222

%e (End)

%p b:= proc(n, h) option remember; `if`(n=0, 1,

%p add(`if`(h=1 or igcd(j, h)>1, b(n-j, j), 0), j=2..n))

%p end:

%p a:= n-> `if`(n=1, 1, b(n, 1)):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Oct 23 2011

%t b[n_, h_] := b[n, h] = If[n == 0, 1, Sum [If[h == 1 || GCD[j, h] > 1, b[n - j, j], 0], {j, 2, n}]]; a[n_] := If[n == 1, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Oct 29 2015, after _Alois P. Heinz_ *)

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{___,x_,y_,___}/;GCD[x,y]==1]&]],{n,0,20}] (* _Gus Wiseman_, Nov 19 2019 *)

%o (PARI) am(n)=local(r);r=matrix(n,n,i,j,i==j);for(i=2,n,for(j=1,i-1,for(k=1,j,if(gcd(i-j,k)>1,r[i,i-j]+=r[j,k]))));r

%o al(n)=local(m);m=am(n);vector(n,i,sum(j=1,i,m[i,j]))

%Y The case of partitions is A328187, with Heinz numbers A328336.

%Y Partitions with all pairs of consecutive parts relatively prime are A328172.

%Y Compositions without consecutive divisible parts are A328460 (one way) or A328508 (both ways).

%Y Cf. A000837, A003242, A018783, A167606, A178471, A178472, A328171, A328188, A328220.

%K nonn

%O 0,5

%A _Franklin T. Adams-Watters_, May 28 2010