|
|
A178407
|
|
a(n+1) = a(n)*1000 + 101^n with a(0) = 0.
|
|
1
|
|
|
0, 1, 1101, 1111201, 1112231301, 1112335361401, 1112345871501501, 1112346933021651601, 1112347040235186811701, 1112347051063753867981801, 1112347052157439140666161901, 1112347052267901353207282352001, 1112347052279058036673935517552101
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Numerators of fractions in partial sums of sum_{n=0...infinity} 101^n/1000^(n+1)converging to fraction 1/899 or sum_{n=0...infinity} 100^n/999^(n+1) whose alternating sum converges to fraction 1/1099 [= alternating sum_99^n/1000^(n+1)].
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/899)*(1000^n-101^n), with n>=1. - Paolo P. Lava, Jun 10 2010
a(n) = 1101*a(n-1) - 101000*a(n-2) for n>2.
G.f.: x / ((101*x-1)*(1000*x-1)).
(End)
|
|
EXAMPLE
|
As interlocking Pascal triangles starting a new triangle to the left of each row:
................1
............1.1.0.1
........1.1.1.1.2.0.1
....1.1.1.2.2.3.1.3.0.1
1.1.1.2.3.3.5.3.6.1.4.0.1
|
|
MATHEMATICA
|
RecurrenceTable[{a[0]==0, a[n]==1000*a[n-1]+101^(n-1)}, a, {n, 15}] (* Harvey P. Dale, Nov 18 2013 *)
|
|
PROG
|
(PARI) concat(0, Vec(x/((101*x-1)*(1000*x-1)) + O(x^30))) \\ Colin Barker, Oct 02 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Prepended zero (from definition), changed offset accordingly, and more terms from Harvey P. Dale, Nov 18 2013
|
|
STATUS
|
approved
|
|
|
|