The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178376 A (-1,-2) Somos-4 sequence associated to the elliptic curve y^2 +y = x^3 +3*x^2 +x. 2

%I #10 Sep 08 2022 08:45:53

%S 1,1,-2,-3,-5,-28,67,411,-506,10855,-74231,-664776,7518457,-30009367,

%T 1791756790,22973709333,-762305126477,-10339529833556,

%U -516074985082229,-26431010871217485,1057255130388472846

%N A (-1,-2) Somos-4 sequence associated to the elliptic curve y^2 +y = x^3 +3*x^2 +x.

%C Hankel transform of the sequence with g.f. 1/(1-x^2/(1+2x^2/(1+(3/4)x^2/(1-(10/9)x^2/(1-...,

%C where -2,-3/4,10/9,... are the x-coordinates of the multiples of (0,0).

%H G. C. Greubel, <a href="/A178376/b178376.txt">Table of n, a(n) for n = 0..154</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019.

%F a(n) = (-a(n-1)*a(n-3) - 2*a(n-2)^2)/a(n-4), n>3.

%t RecurrenceTable[{a[n]==(-a[n-1]*a[n-3] -2*a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 1, a[2] == -2, a[3] == -3}, a, {n, 0, 30}] (* _G. C. Greubel_, Sep 16 2018 *)

%o (PARI) m=30; v=concat([1,1,-2,-3], vector(m-4)); for(n=5, m, v[n] = ( -v[n-1]*v[n-3] - 2*v[n-2]^2)/v[n-4]); v \\ _G. C. Greubel_, Sep 16 2018

%o (Magma) I:=[1,1,-2,-3]; [n le 4 select I[n] else (-Self(n-1)*Self(n-3) - 2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // _G. C. Greubel_, Sep 16 2018

%K easy,sign

%O 0,3

%A _Paul Barry_, May 26 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 06:58 EDT 2024. Contains 375996 sequences. (Running on oeis4.)