OFFSET
1,2
COMMENTS
The number of permutations in S_{n} whose breakpoint graph contains only cycles of length 3 is nonzero only for n=3*k-1 (see references for definitions).
LINKS
J.-P. Doignon and A. Labarre, On Hultman Numbers, J. Integer Seq., 10 (2007), 13 pages.
A. Labarre, Combinatorial aspects of genome rearrangements and haplotype networks (2008), Ph. D. thesis.
FORMULA
a(n) = (3*n)!/(n!*12^n)*Sum_{i=0..n} binomial(n,i)*3^i/(2*i+1). (See references for a proof.)
EXAMPLE
See references for examples (nongraphical explanations do not help much).
PROG
(Maxima) a(p) := ((3*p)!/(p!*12^p))*sum(binomial(p, i)*(3^i)/(2*i+1), i, 0, p);
(PARI) a(n) = (3*n)!/(n!*12^n) * sum(i = 0, n, binomial(n, i)*3^i/(2*i+1)); \\ Michel Marcus, Sep 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Anthony Labarre, Dec 25 2010
EXTENSIONS
More terms from Michel Marcus, Oct 14 2024
STATUS
approved