login
Smallest k such that 33^k mod k = n.
9

%I #2 Mar 31 2012 10:22:16

%S 1,2,31,5,29,7,21,13,13684967,10,23,14,15,538,19,42,17,35,25,49,16861,

%T 60,55,26,1157,38,511,54,30197665,106,14691,46,155,37,18791,62,369,

%U 164,145,93,63517,92,115,1046,3113077,58,1376107,1042,105,50,221

%N Smallest k such that 33^k mod k = n.

%C smallest k such that m^k mod k = n

%C m=2 see A036236

%C m=3 see A078457

%C m=4 see A119678

%C m=5 see A119679

%C m=6 see A127816

%C m=7 see A119715

%C m=8 see A119714

%C m=9 see A127817

%C m=10 see A127818

%C m=11 see A127819

%C m=12 see A127820

%C m=13 see A127821

%C m=14 see A128154

%C m=15 see A128155

%C m=16 see A128156

%C m=17 see A128157

%C m=18 see A128158

%C m=19 see A128159

%C m=20 see A128160

%C m=21 see A128361

%C m=22 see A128362

%C m=23 see A128363

%C m=24 see A128364

%C m=25 see A128365

%C m=26 see A128366

%C m=27 see A128367

%C m=28 see A128368

%C m=29 see A128369

%C m=30 see A128370

%C m=31 see A128371

%C m=32 see A128372

%C m=33 see A178194

%C m=34 see A178195

%C m=35 see A178196

%C m=36 see A178197

%C m=37 see A178198

%C m=38 see A178199

%C m=39 see A178200

%C m=40 see A178201

%C m=41 see A178202

%t aa = {}; Do[k = 1; While[PowerMod[33, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

%Y see comment line.

%K nonn

%O 0,2

%A _Artur Jasinski_, May 22 2010