login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum 11^((k^2+3k)/2) from k=1 to n.
1

%I #12 Dec 26 2023 10:22:16

%S 121,161172,2358108863,379752191692104,672750374684751701305,

%T 13109994864250305051813161676,2810243697916419649311518955166566527,

%U 6626407610546884801816680266380777080570215568

%N Sum 11^((k^2+3k)/2) from k=1 to n.

%C Series of the kind m^((k^2+3k)/2) from k=1 to n was studied by Bernoulli and Euler.

%H Vincenzo Librandi, <a href="/A178192/b178192.txt">Table of n, a(n) for n = 1..40</a>

%t aa = {}; m = 11; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, sum], {n, 1, 20}]; aa (*Artur Jasinski*)

%t Table[11^((k^2+3k)/2),{k,10}]//Accumulate (* _Harvey P. Dale_, Apr 02 2020 *)

%o (PARI) a(n) = sum(k=1, n, 11^((k^2+3*k)/2)); \\ _Michel Marcus_, Sep 09 2013

%Y Cf. A178184-A178193.

%K nonn

%O 1,1

%A _Artur Jasinski_, May 21 2010