login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse of coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2.
3

%I #2 Mar 30 2012 18:59:27

%S 1,2,1,5,6,1,16,32,12,1,64,180,109,20,1,308,1111,934,276,30,1,1727,

%T 7554,8095,3352,585,42,1,11008,56228,72884,39006,9580,1100,56,1,78244,

%U 454572,688562,451992,144706,23396,1897,72,1,611060,3962218,6845904,5317440

%N Inverse of coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2.

%C Inverse is A178120. First column is A178119.

%e Triangle begins

%e 1,

%e 2, 1,

%e 5, 6, 1,

%e 16, 32, 12, 1,

%e 64, 180, 109, 20, 1,

%e 308, 1111, 934, 276, 30, 1,

%e 1727, 7554, 8095, 3352, 585, 42, 1,

%e 11008, 56228, 72884, 39006, 9580, 1100, 56, 1,

%e 78244, 454572, 688562, 451992, 144706, 23396, 1897, 72, 1

%e Production matrix is

%e 2, 1,

%e 1, 4, 1,

%e 0, 3, 6, 1,

%e 0, 0, 5, 8, 1,

%e 0, 0, 0, 7, 10, 1,

%e 0, 0, 0, 0, 9, 12, 1,

%e 0, 0, 0, 0, 0, 11, 14, 1,

%e 0, 0, 0, 0, 0, 0, 13, 16, 1,

%e 0, 0, 0, 0, 0, 0, 0, 15, 18, 1

%K nonn,tabl

%O 0,2

%A _Paul Barry_, May 20 2010