login
Inverse of coefficient array for orthogonal polynomials P(n,x)=x*P(n-1,x)-(2*floor((n+2)/2)-3)*P(n-2,x), P(0,x)=1,P(1,x)=x.
1

%I #4 Dec 26 2023 11:45:52

%S 1,0,1,1,0,1,0,2,0,1,2,0,5,0,1,0,7,0,8,0,1,7,0,31,0,13,0,1,0,38,0,70,

%T 0,18,0,1,38,0,248,0,160,0,25,0,1,0,286,0,728,0,285,0,32,0,1,286,0,

%U 2470,0,2153,0,509,0,41,0,1,0,2756,0,8929,0,4698,0,796,0,50,0,1,2756,0,29543,0

%N Inverse of coefficient array for orthogonal polynomials P(n,x)=x*P(n-1,x)-(2*floor((n+2)/2)-3)*P(n-2,x), P(0,x)=1,P(1,x)=x.

%C Inverses is A178107. First column is aeration of A094664.

%e Triangle begins

%e 1,

%e 0, 1,

%e 1, 0, 1,

%e 0, 2, 0, 1,

%e 2, 0, 5, 0, 1,

%e 0, 7, 0, 8, 0, 1,

%e 7, 0, 31, 0, 13, 0, 1,

%e 0, 38, 0, 70, 0, 18, 0, 1,

%e 38, 0, 248, 0, 160, 0, 25, 0, 1,

%e 0, 286, 0, 728, 0, 285, 0, 32, 0, 1,

%e 286, 0, 2470, 0, 2153, 0, 509, 0, 41, 0, 1

%e Production matrix is

%e 0, 1,

%e 1, 0, 1,

%e 0, 1, 0, 1,

%e 0, 0, 3, 0, 1,

%e 0, 0, 0, 3, 0, 1,

%e 0, 0, 0, 0, 5, 0, 1,

%e 0, 0, 0, 0, 0, 5, 0, 1,

%e 0, 0, 0, 0, 0, 0, 7, 0, 1,

%e 0, 0, 0, 0, 0, 0, 0, 7, 0, 1

%K nonn,tabl

%O 0,8

%A _Paul Barry_, May 20 2010