Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Sep 08 2022 08:45:53
%S 1,148,16570,32614,66109,102250,106870,124636,146140,191773,305887,
%T 415591,421828,552700,834415,1013440,1176505,1190050,1306432,1572082,
%U 1576009,1850437,1873684,1912954,1921144,2004997,2103613,2376340
%N Numbers k for which 10k+1, 10k+3, 10k+7, 10k+9, 10k+13 and 10k+19 are primes.
%C Subsequence of A178084 and of A007811.
%e Associated prime 6-plets are:
%e 11, 13, 17, 19, 23, 29; # from k=1
%e 1481, 1483, 1487, 1489, 1493, 1499; # from k=148
%e 165701, 165703, 165707, 165709, 165713, 165719; # from k=16570
%e 326141, 326143, 326147, 326149, 326153, 326159; # from k=32614
%t Flatten[Table[If[PrimeQ[10* n + 1] && PrimeQ[10*n + 3] && PrimeQ[10*n + 7] && PrimeQ[10*n + 9] && PrimeQ[10*(n + 1) + 3] && PrimeQ[10*(n + 1) + 9], n, {}], {n, 0, 200000}]]
%o (Magma) [n: n in [0..1000]| IsPrime(10*n+1) and IsPrime(10*n+3) and IsPrime(10*n+7) and IsPrime(10*n+9) and IsPrime(10*n+13) and IsPrime(10*n+19)] // _Vincenzo Librandi_, Nov 30 2010
%Y Cf. A007811.
%K nonn
%O 1,2
%A _Roger L. Bagula_, May 19 2010
%E More terms from _Zak Seidov_, _D. S. McNeil_ and _Vincenzo Librandi_, May 22 2010