Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 20 2018 19:02:32
%S 2,5,7,13,31,41,43,59,101,107,127,137,149,199,239,277,359,389,479,613,
%T 743,757,809,829,937,991,1031,1103,1439,1487,1499,1847,1877,2011,2083,
%U 2179,2609,2663,2711,2741,2749,2857,2909,3329,3559,3623,3643,3697,3823
%N p and A002808(p)/2 are both prime.
%C Primes p such that composite(p) is an even semiprime.
%H Robert Israel, <a href="/A177997/b177997.txt">Table of n, a(n) for n = 1..10000</a>
%e a(1)=2 because 2=prime and composite(2)/2=6/2=3=prime.
%p P,C:= selectremove(isprime, [$2..10000]):
%p select(t -> t <= nops(C) and C[t]::even and isprime(C[t]/2), P); # _Robert Israel_, Mar 20 2018
%o (PARI)
%o c=[]; for(n=2, 10000, if(!isprime(n), c=concat(c, n))); c; \\ The composites
%o s=[]; forprime(p=2, #c, if(c[p]%2==0 && isprime(c[p]\2), s=concat(s, p))); s \\ _Colin Barker_, Jun 28 2014
%Y Cf. A002808, A065858, A065897.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, May 17 2010, May 23 2010
%E Corrected by _D. S. McNeil_ and _R. J. Mathar_, May 23 2010