login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177971 Triangle of polynomial coefficients: p(x,n) = (1 - 2x)^(n + 1)*(1 + Sum_{k>=1} 2^(k - 1)*k^n*x^k). 0
1, -1, 1, -3, 4, 1, -5, 14, -8, 1, -7, 32, -28, 16, 1, -9, 62, -36, 88, -32, 1, -11, 112, 104, 448, -176, 64, 1, -13, 198, 928, 2976, 240, 480, -128, 1, -15, 352, 4316, 20448, 17264, 5632, -960, 256, 1, -17, 638, 16500, 126968, 245872, 142752, 11200, 2432, -512, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Row sums are {0, 2, 2, 14, 74, 542, 4682, 47294, 545834, 7087262, 102247562, ...}.

REFERENCES

G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Translations of Mathematica Monographs, Volume 59, American Mathematical Society, Rhode Island, 1984, pages 9ff.

LINKS

Table of n, a(n) for n=0..54.

FORMULA

p(x,n) = (1 - 2x)^(n + 1)*(1 + Sum_{k>=1} 2^(k - 1)*k^n*x^k); t(n,m) = coefficients(t(n,m)).

EXAMPLE

{1, -1},

{1, -3, 4},

{1, -5, 14, -8},

{1, -7, 32, -28, 16},

{1, -9, 62, -36, 88, -32},

{1, -11, 112, 104, 448, -176, 64},

{1, -13, 198, 928, 2976, 240, 480, -128},

{1, -15, 352, 4316, 20448, 17264, 5632, -960, 256},

{1, -17, 638, 16500, 126968, 245872, 142752, 11200, 2432, -512},

{1, -19, 1184, 57472, 709232, 2490976, 2836928, 919552, 75776, -4864, 1024},

{1, -21, 2246, 190040, 3646816, 20950880, 41960896, 29090048, 6165760, 231168, 11776, -2048}

MATHEMATICA

p[x_, n_] = (1 - 2x)^(n + 1)*(1 + Sum[2^(k - 1)*k^n*x^k, {k, 1, Infinity}]);

Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A133779 A137911 A019599 * A114156 A339964 A342915

Adjacent sequences:  A177968 A177969 A177970 * A177972 A177973 A177974

KEYWORD

sign,tabf,less

AUTHOR

Roger L. Bagula, May 16 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 06:55 EDT 2021. Contains 345358 sequences. (Running on oeis4.)