%I #6 Jul 14 2012 16:53:47
%S 1,1,1,1,4,1,1,30,30,1,1,336,3024,336,1,1,5040,665280,665280,5040,1,1,
%T 95040,259459200,4151347200,259459200,95040,1,1,2162160,158789030400,
%U 60339831552000,60339831552000,158789030400,2162160,1,1,57657600
%N Array t(n,m)=(n*m)!/(n + m - 1)! read by antidiagonals.
%C Antidiagonal sums are 1, 2, 6, 62, 3698, 1340642, 4670455682, 120997245489122,
%C 46164597191147635202, 146361193109155192147499522,....
%e The array starts in row n=1 as:
%e 1,1,1,1,1,...
%e 1,4,30,336,5040,...
%e 1,30,3024,665280,259459200,...
%e 1,336,665280,4151347200,60339831552000,..
%e 1,5040,259459200,60339831552000,42744736671436800000,..
%p A177939 := proc(n,m)
%p (n*m)!/(n+m-1)! ;
%p end proc: # _R. J. Mathar_, Jul 14 2012
%t Clear[t, n]
%t t[n_, m_] = (n*m)!/(n + m - 1)!;
%t a = Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}];
%t Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
%t Flatten[%]
%K nonn,tabl
%O 1,5
%A _Roger L. Bagula_, May 15 2010