login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array t(n,m)=(n*m)!/(n + m - 1)! read by antidiagonals.
1

%I #6 Jul 14 2012 16:53:47

%S 1,1,1,1,4,1,1,30,30,1,1,336,3024,336,1,1,5040,665280,665280,5040,1,1,

%T 95040,259459200,4151347200,259459200,95040,1,1,2162160,158789030400,

%U 60339831552000,60339831552000,158789030400,2162160,1,1,57657600

%N Array t(n,m)=(n*m)!/(n + m - 1)! read by antidiagonals.

%C Antidiagonal sums are 1, 2, 6, 62, 3698, 1340642, 4670455682, 120997245489122,

%C 46164597191147635202, 146361193109155192147499522,....

%e The array starts in row n=1 as:

%e 1,1,1,1,1,...

%e 1,4,30,336,5040,...

%e 1,30,3024,665280,259459200,...

%e 1,336,665280,4151347200,60339831552000,..

%e 1,5040,259459200,60339831552000,42744736671436800000,..

%p A177939 := proc(n,m)

%p (n*m)!/(n+m-1)! ;

%p end proc: # _R. J. Mathar_, Jul 14 2012

%t Clear[t, n]

%t t[n_, m_] = (n*m)!/(n + m - 1)!;

%t a = Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}];

%t Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];

%t Flatten[%]

%K nonn,tabl

%O 1,5

%A _Roger L. Bagula_, May 15 2010