login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177931
Locations of records in A177930.
4
1, 2, 4, 8, 10, 16, 20, 24, 29, 33, 36, 46, 76, 99, 108, 132, 179, 213, 217, 251, 286, 397, 431, 439, 445, 471, 535, 658, 677, 702, 780, 889, 1227, 1296, 1388, 1395, 1430, 1438, 1624, 1817, 2082, 2396, 2423, 2978, 3133, 3138, 3432, 3511, 3699, 3838, 4024, 4104, 4589, 4930
OFFSET
1,2
COMMENTS
Or: positions m for which A177929(m)-1 and A177929(m)+1 are twin primes.
MAPLE
A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
A177929 := proc(n) option remember; if n = 1 then 4; else d1 := A020639(procname(n-1)-1) ; d2 := A020639(procname(n-1)+1) ; procname(n-1)+min(d1, d2) -1; end if; end proc:
A177930 := proc(n) d1 := A020639(A177929(n)-1) ; d2 := A020639(A177929(n)+1) ; min(d1, d2) ; end proc:
read("transforms") ; L := [seq(A177930(n), n=1..1300)] ; RECORDS(L)[2] ; # R. J. Mathar, May 31 2010
MATHEMATICA
lpf[n_] := FactorInteger[n][[1, 1]];
b[n_] := b[n] = If[n == 1, 4, b[n-1] + lpf[b[n-1]^2-1]-1];
Position[Table[b[n], {n, 1, 1000}], k_ /; PrimeQ[k-1] && PrimeQ[k+1]] // Flatten (* Jean-François Alcover, Feb 24 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 15 2010
EXTENSIONS
Extended by R. J. Mathar, May 31 2010
More terms from Jean-François Alcover, Feb 24 2024
STATUS
approved