login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Opmanis's sequence: a(n) is the smallest integer k such that k or one of its nonzero substrings (regarded as an integer) is divisible by every integer in the range 1 through n.
6

%I #21 Jan 22 2022 09:38:55

%S 1,2,6,12,45,54,56,56,245,504,1440,1440,5044,5044,10456,10569,11704,

%T 11704,11704,13608,13608,13608,26460,26460,198007,258064,264600,

%U 264600,475440,475440,1754608,1754608,2258064,2258064,2646004,2646004,2992520

%N Opmanis's sequence: a(n) is the smallest integer k such that k or one of its nonzero substrings (regarded as an integer) is divisible by every integer in the range 1 through n.

%C Comment from _N. J. A. Sloane_, May 28 2010: (Start)

%C The factorizations of the initial terms are:

%C 1, 2, 2*3, 2^2*3, 3^2*5, 2*3^3, 2^3*7, 2^3*7, 5*7^2, 2^3*3^2*7, 2^5*3^2*5, 2^5*3^2*5, 2^2*13*97, 2^2*13*97, 2^3*1307, 3*13*271, 2^3*7*11*19,

%C 2^3*7*11*19, 2^3*7*11*19, 2^3*3^5*7, 2^3*3^5*7, 2^3*3^5*7, 2^2*3^3*5*7^2, 2^2*3^3*5*7^2, 23*8609, 2^4*127^2, 2^3*3^3*5^2*7^2, 2^3*3^3*5^2*7^2, 2^4*3*5*7*283,

%C 2^4*3*5*7*283, 2^4*109663, 2^4*109663, 2^4*3^3*5227, 2^4*3^3*5227, 2^2*139*4759, 2^2*139*4759, 2^3*5*79*947, ...

%C The name "Opmanis's sequence" is due to _N. J. A. Sloane_, not the author. (End)

%H Robert Gerbicz, <a href="/A177834/b177834.txt">Table of n, a(n) for n = 1..102</a>

%e a(8)=56 because 56 is divisible by 1,2,4,7,8; 5 is divisible by 5; 6 is divisible by 3 and 6. Therefore the set {1,2,3,4,5,6,7,8} is covered by the divisors. 56 is the smallest number with this property.

%t k = 1; lst = {}; mx = 0; f[n_] := Block[{a, d, id = IntegerDigits@ n}, a = Complement[ Union[ FromDigits /@ Flatten[ Table[ Partition[ id, k, 1], {k, Length@ id}], 1]], {0}]; d = Union[ Flatten[ Divisors /@ a]]; Complement[ Range@ 100, d][[1]] - 1]; While[k < 3000000, a = f@k; If[a > mx, Print[{a, k}]; AppendTo[lst, k]; mx = a]; k++ ] (* _Zak Seidov_ & _Robert G. Wilson v_, May 30 2010 *)

%o (Python)

%o def substrings(n): # returns set of nonzero substrings of n

%o s = str(n)

%o ss = (s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1))

%o return set(int(sij) for sij in ss) - {0}

%o def a(n, startk=1):

%o k = startk

%o while True:

%o subsk = substrings(k)

%o if all(any(kij%m == 0 for kij in subsk) for m in range(1, n+1)):

%o return k

%o k += 1

%o def afind():

%o n, an = 1, 1

%o while True:

%o n, an = n+1, a(n, startk=an)

%o print(an, end=", ")

%o afind() # _Michael S. Branicky_, Jan 22 2022

%Y Cf. A003418 (a weak upper bound), A169819, A169858.

%K nonn,base,nice

%O 1,2

%A _Martins Opmanis_, May 14 2010

%E Edited by _N. J. A. Sloane_, May 28 2010

%E a(1)-a(37) confirmed by _Zak Seidov_, May 28 2010