login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177815 Triangle read by rows: binomial(n,floor(m^(1/3))). 0

%I

%S 1,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,1,9,9,1,10,45,1,11,165,1,12,495,

%T 1,13,1287,1,14,3003,1,15,6435,1,16,12870,1,17,24310,1,18,43758,1,19,

%U 75582,1,20,125970

%N Triangle read by rows: binomial(n,floor(m^(1/3))).

%C Row sums are: {1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 56, 177, 508, 1301, 3018, 6451, 12887,

%C 24328, 43777, 75602, 125991,...}.

%C First cubic polynomial is:{1, 27, 2220075, 1} - unclear comment!

%e {1},

%e {1, 1},

%e {1, 2},

%e {1, 3},

%e {1, 4},

%e {1, 5},

%e {1, 6},

%e {1, 7},

%e {1, 8, 1},

%e {1, 9, 9},

%e {1, 10, 45},

%e {1, 11, 165},

%e {1, 12, 495},

%e {1, 13, 1287},

%e {1, 14, 3003},

%e {1, 15, 6435},

%e {1, 16, 12870},

%e {1, 17, 24310},

%e {1, 18, 43758},

%e {1, 19, 75582},

%e {1, 20, 125970},

%e ...

%e {1, 27, 2220075, 1}

%t Clear[t, n, m];

%t t[n_, m_] = Binomial[n, m^3];

%t Table[Table[t[n, m], {m, 0, Floor[n^(1/3)]}], {n, 0, 20}];

%t Flatten[%]

%Y Cf. A003099,A181543

%K nonn,tabf

%O 0,5

%A _Roger L. Bagula_, Dec 13 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 17:29 EDT 2021. Contains 347489 sequences. (Running on oeis4.)