login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) = binomial(4*n, 4*m), 0 <= m <= n, read by rows.
4

%I #10 May 14 2019 22:06:44

%S 1,1,1,1,70,1,1,495,495,1,1,1820,12870,1820,1,1,4845,125970,125970,

%T 4845,1,1,10626,735471,2704156,735471,10626,1,1,20475,3108105,

%U 30421755,30421755,3108105,20475,1,1,35960,10518300,225792840,601080390,225792840,10518300,35960,1,1,58905,30260340,1251677700,7307872110,7307872110,1251677700,30260340,58905,1

%N Triangle T(n,m) = binomial(4*n, 4*m), 0 <= m <= n, read by rows.

%C Row sums are A070775(n).

%F Right-left symmetric: T(n,m) = T(n,n-m).

%e 1;

%e 1, 1;

%e 1, 70, 1;

%e 1, 495, 495, 1;

%e 1, 1820, 12870, 1820, 1;

%e 1, 4845, 125970, 125970, 4845, 1;

%e 1, 10626, 735471, 2704156, 735471, 10626, 1;

%e 1, 20475, 3108105, 30421755, 30421755, 3108105, 20475, 1;

%e 1, 35960, 10518300, 225792840, 601080390, 225792840, 10518300, 35960, 1;

%e 1, 58905, 30260340, 1251677700, 7307872110, 7307872110, 1251677700,30260340, 58905, 1;

%e 1, 91390, 76904685, 5586853480, 62852101650, 137846528820, 62852101650, 5586853480, 76904685, 91390, 1;

%p A177808 := proc(n,m) binomial(4*n,4*m) ; end proc: # _R. J. Mathar_, Dec 13 2010

%t t[n_, m_] = Binomial[n, 4*m];

%t Table[Table[t[n, m], {m, 0, Floor[n/4]}], {n, 0, 40, 4}];

%t Flatten[%]

%Y Cf. A086645, A034839, A070775.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Dec 13 2010