Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 18 2022 15:59:21
%S 0,2,1,3,2,2,1,1,3,3,5,0,0,2,4,2,4,4,1,1,1,3,1,1,1,1,3,3,3,1,7,2,2,0,
%T 0,2,2,0,2,2,2,2,6,2,0,2,2,6,2,2,2,6,2,6,5,1,1,1,1,1,1,1,1,3,1,3,1,1,
%U 3,3,1,3,5,3,5,7,1,1,1,1,1,1,5,1,5,5,1,1,3,5,3,7,5,5,5,7,7,4,2,0,2,0,0,0,2
%N a(n) = |(number of 1's in binary representation of prime(n)) - (number of 0's in binary representation of prime(n))|.
%H Karl-Heinz Hofmann, <a href="/A177718/b177718.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = abs(A014499(n) - A035103(n)).
%F a(n) = abs(A037861(prime(n))). - _R. J. Mathar_, May 15 2010
%e a(1)=0 because 2 = 10_2 and abs(1-1) = 0;
%e a(2)=2 because 3 = 11_2 and abs(0-2) = 2;
%e a(3)=1 because 5 = 101_2 and abs(1-2) = 1.
%p A023416 := proc(n) a := 0 ; for d in convert(n,base,2) do if d = 0 then a := a+1 ; end if; end do; a ; end proc:
%p A000120 := proc(n) a := 0 ; for d in convert(n,base,2) do if d = 1 then a := a+1 ; end if; end do; a ; end proc:
%p A037861 := proc(n) A023416(n)-A000120(n) ; end proc:
%p A177718 := proc(n) abs(A037861(ithprime(n))) ; end proc: seq(A177718(n),n=1..120) ; # _R. J. Mathar_, May 15 2010
%p # second Maple program:
%p a:= n-> abs(add(2*i-1, i=Bits[Split](ithprime(n)))):
%p seq(a(n), n=1..105); # _Alois P. Heinz_, Jan 18 2022
%t nzmnu[n_]:=Module[{z=DigitCount[n,2,0]},Abs[2z-IntegerLength[n,2]]]; nzmnu/@ Prime[Range[110]] (* _Harvey P. Dale_, Feb 15 2015 *)
%o (Python) from sympy import isprime
%o print([abs(bin(n)[2:].count("1") - bin(n)[2:].count("0")) for n in range (0,1000) if isprime(n)]) # _Karl-Heinz Hofmann_, Jan 18 2022
%Y Cf. A000040, A000120, A004676.
%K nonn,base
%O 1,2
%A _Juri-Stepan Gerasimov_, May 12 2010, May 18 2010
%E Corrected at three or more places by _R. J. Mathar_, May 15 2010