Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 12 2023 07:41:54
%S 1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,
%T 1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,
%U 2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2
%N Period 3: repeat [1, 1, 2].
%C Continued fraction expansion of (2+sqrt(10))/3.
%C Decimal expansion of 112/999.
%C a(n) = A131534(n+2) = |A132419(n)| = |A132367(n)| = |A131556(n+2)|= |A122876(n)|.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).
%F a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 1, a(2) = 2.
%F G.f.: (1+x+2*x^2)/(1-x^3).
%F a(n) = 4/3 - cos(2*Pi*n/3)/3 - sin(2*Pi*n/3)/sqrt(3). - _R. J. Mathar_, Oct 08 2011
%F a(n) = 1 + A022003(n). - _Wesley Ivan Hurt_, Jul 01 2016
%p seq(op([1, 1, 2]), n=1..50); # _Wesley Ivan Hurt_, Jul 01 2016
%t PadRight[{},120,{1,1,2}] (* or *) LinearRecurrence[{0,0,1},{1,1,2},120] (* _Harvey P. Dale_, Dec 19 2014 *)
%o (Magma) &cat[ [1, 1, 2]: k in [1..35] ];
%o (PARI) a(n)=max(n%3,1) \\ _Charles R Greathouse IV_, Jul 17 2016
%Y Cf. A022003, A131534, A177703.
%K cofr,nonn,easy
%O 0,3
%A _Klaus Brockhaus_, May 11 2010