%I #4 Nov 07 2017 16:58:14
%S 9,33,37,38,213,217,218,241,242,246,2313,2317,2318,2341,2342,2346,
%T 2521,2522,2526,2550,30033,30037,30038,30061,30062,30066,30241,30242,
%U 30246,30270,32341,32342,32346,32370,32550,510513,510517,510518,510541,510542
%N Sums of 3 distinct primorials.
%C This is to numbers that are the sum of 3 different primes (A124867) as primorials (A002110) are to primes (A000040). The subsequence of primes among these sums of 3 distinct primorials begins: 37, 241, 2341, 2521, 30241, 32341, 512821, 540541.
%F {a(n)} = {A002110(i) + A002110(j) + A002110(k) for i =/= j, i =/= k, j =/= k}.
%e 9 = 6+2+1
%e 33 = 30+2+1
%e 37 = 30+6+1
%e 38 = 30+6+2
%e 213 = 210+2+1
%t Take[Total/@Subsets[Join[{1},FoldList[Times,Prime[Range[10]]]],{3}]// Union,40] (* _Harvey P. Dale_, Nov 07 2017 *)
%Y Cf. A000040, A002110, A006862, A038609, A124867, A177689.
%K easy,nonn
%O 1,1
%A _Jonathan Vos Post_, May 11 2010