login
Primes (up to the sign) which are values of the polynomial (n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 4*1733549)/4, in the order of increasing n.
0

%I #6 Mar 30 2012 17:34:41

%S -1733549,-547363,-382769,-256301,-47093,-17539,-1181,4967,127,-7109,

%T -15061,-22397,-15173,-3833,9851,42403,60257,78487,114299,131203,

%U 162257,176611,190669,205103,261791,290539,327853,376547,521671,626159,758203

%N Primes (up to the sign) which are values of the polynomial (n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 4*1733549)/4, in the order of increasing n.

%C This polynomial yields 52 primes in the range of n= 0 to 100, compared to 78 for A121887.

%C Only the primes are listed in the sequence, associated with n=0, 4, 5, 6, 9, 10, 11, 13, 14,...

%t Flatten[Table[If[PrimeQ[(x^5 - 133*x^4 + 6729*x^3 - 158379*x^2 + 1720294*x - 4*1733549)/4], (x^5 - 133*x^4 + 6729*x^3 - 158379* x^2 + 1720294*x - 4*1733549)/4, {}], {x, 0, 100}]]

%K sign

%O 0,1

%A _Roger L. Bagula_, May 11 2010