login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up, up.
8

%I #31 Mar 11 2021 17:30:00

%S 1,1,2,6,24,120,720,5039,40305,362682,3626190,39881160,478490760,

%T 6219298800,87055051511,1305598835941,20885951018102,354999461960226,

%U 6388879812001704,121367620532150280,2426930566055020080,50956684690331669759,1120852238721212726609

%N Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up, up.

%H Alois P. Heinz, <a href="/A177553/b177553.txt">Table of n, a(n) for n = 0..450</a>

%H Mingjia Yang, Doron Zeilberger, <a href="https://arxiv.org/abs/1805.06077">Increasing Consecutive Patterns in Words</a>, arXiv:1805.06077 [math.CO], 2018.

%H Mingjia Yang, <a href="https://doi.org/10.7282/t3-d9z1-aw94">An experimental walk in patterns, partitions, and words</a>, Ph. D. Dissertation, Rutgers University (2020).

%F a(n)/n! ~ c * (1/r)^n, where r = 1.0001738181531504504518260962714687775785823593018886... is the root of the equation Sum_{n>=0} (r^(7*n)/(7*n)! - r^(7*n+1)/(7*n+1)!) = 0, c = 1.0010191104259450282450770594076722424772755532278.... - _Vaclav Kotesovec_, Aug 29 2014

%F E.g.f.: -(7/(2*((-cos(x*cos(3*Pi/14)))*cosh(x*sin(3*Pi/14)) + cos(x*cos(3*Pi/14))*cosh(x*sin(3*Pi/14))* sin(3*Pi/14) - cosh(x*sin(Pi/14))* (cos(x*cos(Pi/14))*(1 + sin(Pi/14)) - cos(Pi/14)*sin(x*cos(Pi/14))) + cos(3*Pi/14)*cosh(x*sin(3*Pi/14))* sin(x*cos(3*Pi/14)) - cosh(x*cos(Pi/7))* ((1 + cos(Pi/7))*cos(x*sin(Pi/7)) - sin(Pi/7)*sin(x*sin(Pi/7))) + cos(x*sin(Pi/7))* sinh(x*cos(Pi/7)) + cos(Pi/7)*cos(x*sin(Pi/7))* sinh(x*cos(Pi/7)) - sin(Pi/7)*sin(x*sin(Pi/7))* sinh(x*cos(Pi/7)) + cos(x*cos(Pi/14))* sinh(x*sin(Pi/14)) + cos(x*cos(Pi/14))*sin(Pi/14)* sinh(x*sin(Pi/14)) - cos(Pi/14)*sin(x*cos(Pi/14))* sinh(x*sin(Pi/14)) - cos(x*cos(3*Pi/14))* sinh(x*sin(3*Pi/14)) + cos(x*cos(3*Pi/14))* sin(3*Pi/14)*sinh(x*sin(3*Pi/14)) + cos(3*Pi/14)*sin(x*cos(3*Pi/14))* sinh(x*sin(3*Pi/14))))). - _Vaclav Kotesovec_, Jan 31 2015

%F In closed form, c = 7 / (r * (2*cos(r*sin(Pi/7))*cosh(r*cos(Pi/7)) + cos(Pi/7 - r*sin(Pi/7)) * cosh(r*cos(Pi/7)) + cos(Pi/7 - r*sin(Pi/7)) * cosh(r*cos(Pi/7)) + 2*cos(r*cos(Pi/14)) * cosh(r*sin(Pi/14)) + 2*cos(r*cos(3*Pi/14)) * cosh(r*sin(3*Pi/14)) + 2*cosh(r*sin(Pi/14)) * sin(Pi/14 + r*cos(Pi/14)) - 2*cosh(r*sin(3*Pi/14)) * sin(3*Pi/14 - r*cos(3*Pi/14)) - 2*cos(r*sin(Pi/7)) * sinh(r*cos(Pi/7)) - cos(Pi/7 - r*sin(Pi/7)) * sinh(r*cos(Pi/7)) - cos(Pi/7 - r*sin(Pi/7)) * sinh(r*cos(Pi/7)) - 2*cos(r*cos(Pi/14)) * sinh(r*sin(Pi/14)) - 2*sin(Pi/14 + r*cos(Pi/14))*sinh(r*sin(Pi/14)) + 2*cos(r*cos(3*Pi/14)) * sinh(r*sin(3*Pi/14)) - 2*sin((3*Pi)/14 - r*cos(3*Pi/14)) * sinh(r*sin(3*Pi/14)))). - _Vaclav Kotesovec_, Feb 01 2015

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p `if`(t<5, add(b(u+j-1, o-j, t+1), j=1..o), 0)+

%p add(b(u-j, o+j-1, 0), j=1..u))

%p end:

%p a:= n-> b(n, 0, 0):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 07 2013

%t nn=20;r=6;a=Apply[Plus,Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i,{i,1,r}]),{x,0,nn}]][[n]]/(n+r)!,{n,1,nn-r}]]/.y->-1;Range[0,nn]! CoefficientList[Series[1/(1-x-a),{x,0,nn}],x] (* _Geoffrey Critzer_, Feb 25 2014 *)

%t Table[n!*SeriesCoefficient[1/(Sum[x^(7*k)/(7*k)!-x^(7*k+1)/(7*k+1)!,{k,0,n}]),{x,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Aug 29 2014 *)

%Y Column k=63 of A242784.

%Y Cf. A080635, A049774, A117158, A177533, A177523.

%K nonn

%O 0,3

%A _R. H. Hardin_, May 10 2010

%E a(18)-a(22) from _Alois P. Heinz_, Oct 07 2013

%E a(0)=1 prepended by _Alois P. Heinz_, Aug 08 2018