login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of {1,...,n} avoiding adjacent step pattern up, up, down, up, up.
2

%I #16 Apr 19 2022 11:33:01

%S 1,1,2,6,24,120,701,4774,37128,326089,3184221,34191983,400308461,

%T 5076257396,69329710171,1014612340743,15838898430094,262706269352374,

%U 4613506518038420,85520547931176984,1668736482655334275,34189755475407632542,733851215342599413848

%N Number of permutations of {1,...,n} avoiding adjacent step pattern up, up, down, up, up.

%H Alois P. Heinz, <a href="/A177532/b177532.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ c * d^n * n!, where d = 0.975638124670183802889377522566191208591041394..., c = 1.123281860028517266849117754708517961017398615... . - _Vaclav Kotesovec_, Jan 17 2015

%p b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o+t<6, (u+o)!,

%p add(b(u-j, o+j-1, [1, 1, 4, 1, 1][t]), j=1..u)+

%p add(b(u+j-1, o-j, [2, 3, 3, 5, 6][t]), j=1..o)))

%p end:

%p a:= n-> b(n, 0, 1):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Oct 21 2013

%t b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o + t < 6, (u + o)!,

%t Sum[b[u - j, o + j - 1, {1, 1, 4, 1, 1}[[t]]], {j, 1, u}] +

%t Sum[b[u + j - 1, o - j, {2, 3, 3, 5, 6}[[t]]], {j, 1, o}]]];

%t a[n_] := b[n, 0, 1];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Apr 19 2022, after _Alois P. Heinz_ *)

%Y Column k=27 of A242784.

%K nonn

%O 0,3

%A _R. H. Hardin_, May 10 2010

%E a(17)-a(22) from _Alois P. Heinz_, Oct 21 2013