login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down.
2

%I #17 Apr 20 2022 10:31:29

%S 1,1,2,6,24,120,715,4970,39480,352800,3502800,38255900,455795100,

%T 5883052500,81774966000,1217871018000,19346879737625,326549862671250,

%U 5835951345093750,110091785625495000,2186122850020215000,45580964489553559375,995625115672520581250

%N Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down.

%H Alois P. Heinz, <a href="/A177524/b177524.txt">Table of n, a(n) for n = 0..170</a>

%F a(n) ~ c * d^n * n!, where d = 0.9928637443921790380857377558103269268777241137790934589694993..., c = 1.0369478195304845650491426260146999487076420703190374702807322... . - _Vaclav Kotesovec_, Aug 29 2014

%p b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o=0, 1,

%p add(b(u-j, o+j-1, `if`(t=1, 1, t+1)), j=1..u)+

%p add(b(u+j-1, o-j, 2), j=1..o)))

%p end:

%p a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Oct 21 2013

%t b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o == 0, 1,

%t Sum[b[u - j, o + j - 1, If[t == 1, 1, t + 1]], {j, 1, u}] +

%t Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]];

%t a[n_] := If[n == 0, 1, Sum[b[j - 1, n - j, 1], {j, 1, n}]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Apr 20 2022, after _Alois P. Heinz_ *)

%Y Columns k=16,30 of A242784.

%K nonn

%O 0,3

%A _R. H. Hardin_, May 10 2010

%E a(17)-a(22) from _Alois P. Heinz_, Oct 20 2013