login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n^3, n^2) / (n^2 + n + 1).
1

%I #27 Sep 16 2024 12:48:57

%S 10,360525,23263187479980,4195317468983232014706855,

%T 3118254010126197540790713959812283024388,

%U 13329519847131745416659896296893907619682838146506167497550

%N a(n) = binomial(n^3, n^2) / (n^2 + n + 1).

%C All entries are integers. [Proof: binomial(n^3, n^2) / (n^2 + n + 1) = n^3 (n^3 - 1) (n^3 - 2)*...*(n^3- n^2 +1) / ( (n^2)! *(n^2 + n + 1)). With n^3 - 1 = (n-1)*(n^2 + n + 1), we obtain a(n) = n* binomial(n^3-2, n^2-2) / (n+1). Finally: (n+1) * binomial(n^3, n^2) * 1/ (n^2 + n + 1) = n*binomial(n^3-2, n^2-2). QED]

%C The step after "finally" seems to demonstrate merely that (n+1)*a(n) is an integer, but not that a(n) is itself an integer. Is the proof incomplete? - _R. J. Mathar_, Dec 06 2010

%C So far all that has been shown is that (n+1)*a(n) is an integer. To complete the proof, note that a(n) = n^3*(n-1)*(n^3-2)*...*(n^3-n^2) / (n^2*(n^2-1)!*(n^3-n^2)) = binomial(n^3-2,n^2-1)/n. Hence n*a(n) is also an integer, and so (n+1)*a(n) - n*a(n) = a(n) is an integer. Q.E.D. - _N. J. A. Sloane_, Dec 09 2010

%H G. C. Greubel, <a href="/A177466/b177466.txt">Table of n, a(n) for n = 2..23</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

%e For n = 2, a(2) = binomial(8,4)/7 = 70/7 = 10.

%p A177466 := proc(n) binomial(n^3,n^2)/(n^2+n+1); end proc:

%p seq(A177466(n),n=2..10) ; # _R. J. Mathar_, Dec 06 2010

%t Table[Binomial[n^3,n^2]/(n^2+n+1),{n,2,7}] (* _Harvey P. Dale_, Jan 24 2019 *)

%o (Magma) [Binomial(n^3,n^2)/(n^2+n+1): n in [2..12]]; // _G. C. Greubel_, Jul 18 2024

%o (SageMath) [binomial(n^3,n^2)/(n^2+n+1) for n in range(2,13)] # _G. C. Greubel_, Jul 18 2024

%Y Cf. A000108, A000984, A060545, A177234, A177456.

%K nonn

%O 2,1

%A _Michel Lagneau_, May 09 2010