login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

( binomial(2*p,p) - 2)/p where p = prime(n).
3

%I #19 Sep 08 2022 08:45:53

%S 2,6,50,490,64130,800046,137270954,1860277042,357975249026,

%T 1036802293087622,15013817846943906,47192717955016924590,

%U 10360599532897359064118,154361699651715243559786

%N ( binomial(2*p,p) - 2)/p where p = prime(n).

%C All entries are integer because binomial(2p, p) == 2 (mod p). [Proof: p!*binomial(2p, p) = 2p(2p - 1)(2p - 2) ... (p + 1) .

%C Therefore (p - 1)!*binomial(2p, p) = 2(2p - 1) ... (p + 1) == 2(p - 1)! (mod p).

%C Since p is prime: (p - 1)! <> 0 (mod p). Because Z/pZ is a finite field, we conclude that binomial(2p, p) == 2 (mod p).]

%H Amiram Eldar, <a href="/A177454/b177454.txt">Table of n, a(n) for n = 1..263</a>

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.

%F a(n) = (A000984(p) - 2) / p with p = A000040(n).

%e a(1) = 2 because prime(1) = 2 and (binomial(4, 2) - 2)/2 = (6 - 2)/2 = 2.

%e a(4) = 490 because prime(4) = 7 and (binomial(14, 7) - 2)/7 = (3432 - 2)/7 = 490.

%p with(numtheory): n0:=20: T:=array(1..n0): k:=1: for n from 1 to 72 do:if type(n,prime)=true then T[k]:= (binomial(2*n,n)-2)/n: k:=k+1: fi: od: print(T):

%t Table[(Binomial[2Prime[n], Prime[n]] - 2)/Prime[n], {n, 15}] (* _Alonso del Arte_, Feb 27 2013 *)

%o (Magma) [(Binomial(2*p,p)-2)/p where p is NthPrime(n):n in [1..14]]; // _Marius A. Burtea_, Aug 11 2019

%Y Cf. A000984, A060842, A060545, A024498.

%K nonn

%O 1,1

%A _Michel Lagneau_, May 09 2010