Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 20 2019 11:38:03
%S 7,7,6,3,4,4,3,4,8,10,2,2,2,4,6,8,10,3,2,2,2,2,4,4,4,5,6,6,6,14,3,2,2,
%T 2,2,2,2,2,4,4,4,4,4,4,4,6,6,6,8,8,8,8,12,4,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6
%N The number of positive integers m for which the exponents of 2 and p_n in the prime power factorization of m! are both powers of 2.
%C Or a(n) is the maximal m for which the Fermi-Dirac representation of m! (see comment in A050376) contains single power of 2 and single power of prime(n).
%H Robert Price, <a href="/A177436/b177436.txt">Table of n, a(n) for n = 2..127</a>
%H V. Shevelev, <a href="http://journals.impan.gov.pl/aa/Inf/126-3-1.html">Compact integers and factorials</a>, Acta Arithmetica 126 (2007), no. 3, 195-236.
%F a(2)=a(3)=7; a(4)=6; if p_n has the form (2^(4*k+1)+3)/5,k>=2,then a(n)=5; if p_n is a Fermat prime: p_n=2^(2^(k-1))+1, k>=3, then a(n)=4; if p_n has the form 2^k+3, k>=3, then a(n)=3; otherwise, if 2^(k-1)+3<p_n<=2^k-1, then a(n)=2*(1+floor(log_2((p_n-5)/(2^k-p_n))), where p_n=prime(n).
%e For p_5=11, we have 11=2^3+3. Therefore a(5)=3; for p_27=103, we have 103=(2^(4*2+1)+3)/5. Therefore a(27)=5; for p_31=127, a(31)=2*(1+floor(log_2((127-5)/(128-127)))=14.
%t nlim = 127; mlim = (Prime[nlim] + 1)^2/2 + 3; f = Table[0, mlim]; c = Table[0, nlim];
%t For[m = 2, m <= mlim, m++,
%t mf = FactorInteger[m];
%t For[i = 1, i <= Length[mf], i++, f[[PrimePi@First@mf[[i]]]] += Last@mf[[i]]];
%t If[! IntegerQ@Log[2, f[[1]]], Continue[]];
%t For[p = 1, p <= nlim, p++, If[IntegerQ@Log[2, f[[p]]], c[[p]]++]];
%t ]; c (* _Robert Price_, Jun 19 2019 *)
%Y Cf. A000142, A177378, A177355, A177349, A177458, A177459, A177498, A050376, A169655, A169661.
%K nonn
%O 2,1
%A _Vladimir Shevelev_, May 08 2010
%E a(32)-a(127) from _Robert Price_, Jun 19 2019