login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The magic constants of 6 X 6 magic squares composed of consecutive primes.
7

%I #25 Oct 31 2018 09:27:24

%S 484,744,806,868,930,1390,1460,1494,1634,1704,1740,1848,1992,2100,

%T 2172,2316,2390,2540,3116,3192,3694,3734,3774,4486,4946,4988,5736,

%U 6104,6148,6526,6568,6610,6776,6820,6950,7036,7078,7120,7984,8118,8162,8828,9318

%N The magic constants of 6 X 6 magic squares composed of consecutive primes.

%C Let Z be a sum of 36 consecutive primes. A necessary condition to get a 6 X 6 magic square using these primes is that Z=6S, where S is even. The smallest magic constant of a 6 X 6 magic square of consecutive primes is 484 (cf. A073520).

%C Each of the first 100 possible arrays of 36 consecutive primes which satisfy the necessary condition produces a magic square.

%C A program written by Stefano Tognon was used.

%H Natalya Makarova, <a href="http://www.natalimak1.narod.ru/mk6pr.htm">Author's webpage (in Russian)</a>

%F a(n) = Sum_{k=0..35} A000040(A000720(A272387(n))+k)/6. - _M. F. Hasler_, Oct 28 2018

%e S = 744

%e [139 113 151 131 83 127]

%e [223 149 89 47 157 79]

%e [173 103 181 167 59 61]

%e [ 67 137 53 97 211 179]

%e [101 199 73 109 71 191]

%e [ 41 43 197 193 163 107]

%e S = 806

%e [131 53 107 157 191 167]

%e [ 89 229 179 97 109 103]

%e [ 83 211 71 139 79 223]

%e [113 101 137 181 227 47]

%e [197 61 163 59 127 199]

%e [193 151 149 173 73 67]

%e S = 868

%e [191 137 79 193 197 71]

%e [ 67 157 73 229 239 103]

%e [179 173 167 97 101 151]

%e [211 181 223 61 109 83]

%e [113 131 199 139 59 227]

%e [107 89 127 149 163 233]

%e Magic square with S=930 can be pan-diagonal (cf. A073523).

%e Example of a non-pan-diagonal square:

%e S = 930

%e [167 71 151 199 131 211]

%e [ 89 241 181 73 113 233]

%e [ 83 227 127 197 229 67]

%e [239 137 139 103 163 149]

%e [179 97 223 251 101 79]

%e [173 157 109 107 193 191]

%o (PARI) A177434(n, p=A272387[n], N=6)=sum(i=2, N^2, p=nextprime(p+1), p)/N \\ Uses a precomputed array A272387, but can actually be used to find the terms, cf A272387. - _M. F. Hasler_, Oct 28 2018

%Y Cf. A173981 (analog for 4 X 4), A176571 (analog for 5 X 5), A073523 (36 consecutive primes of a pandiagonal magic square), A073520 (smallest magic sum for n X n), A259733 (most-perfect 8 X 8), A272387 (smallest element of 6 X 6 magic squares of consecutive primes).

%K nonn

%O 1,1

%A _Natalia Makarova_, May 08 2010

%E Edited by _M. F. Hasler_, Oct 28 2018