Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 08 2022 13:27:54
%S 0,0,1,2,2,1,4,3,3,1,3,3,2,3,5,4,4,1,3,3,5,1,4,8,3,2,3,5,6,4,6,5,5,1,
%T 3,3,5,2,6,3,3,3,4,3,4,4,5,6,4,2,3,7,5,1,5,5,3,4,6,6,7,5,7,6,6,1,3,3,
%U 5,2,6,4,7,1,3,3,3,5,6,4,4,2,6,3,5,5,4,6,6,2,4,12,6,5,6,7,5,2,3,6,5,3,6,3,6
%N Exponent of the highest power of 2 dividing binomial(n^2,n).
%C a(n) is the largest integer such that 2^a(n) divides binomial(n^2,n)=A014062(n).
%C a(n) is the number of carries when adding n to n^2-n in base 2. - _Robert Israel_, Oct 23 2019
%H Robert Israel, <a href="/A177424/b177424.txt">Table of n, a(n) for n = 0..10000</a>(n=0 to 1000 from Harvey P. Dale)
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kummer%27s_theorem">Kummer's theorem</a>
%F a(n) = A007814(A014062(n)).
%e For n = 6, binomial(36,6) = 1947792 = 2^4*3*7*11*17*31, the highest power of 2 is 2^4, and the exponent of 2^4 is a(6)=4.
%p A007814 := proc(n) if type(n,'odd') then 0; else for p in ifactors(n)[2] do if op(1,p) = 2 then return op(2,p); end if; end do: end if; end proc:
%p A014062 := proc(n) binomial(n^2,n) ; end proc:
%p A177424 := proc(n) A007814(A014062(n)) ; end proc: seq(A177424(n),n=0..80) ;
%p # Alternative:
%p nc:= proc(a,b,c)
%p local t;
%p if c=0 and (a=0 or b=0) then return 0 fi;
%p t:= (a mod 2) + (b mod 2) + c;
%p if t < 2 then procname(floor(a/2),floor(b/2),0)
%p else 1 + procname(floor(a/2),floor(b/2),1)
%p fi
%p end proc:
%p seq(nc(n,n^2-n,0),n=0..100); # _Robert Israel_, Oct 23 2019
%t IntegerExponent[Table[Binomial[n^2,n],{n,0,120}],2] (* _Harvey P. Dale_, Mar 31 2019 *)
%o (Python)
%o from math import comb
%o def A177424(n): return (~(m:=comb(n**2,n))& m-1).bit_length() # _Chai Wah Wu_, Jul 08 2022
%o (PARI) valp(n,p=2)=my(s); while(n\=p, s+=n); s
%o a(n)=valp(n^2)-valp(n^2-n)-valp(n) \\ _Charles R Greathouse IV_, Jul 08 2022
%Y Cf. A014062, A000120, A177234
%K nonn,easy
%O 0,4
%A _Michel Lagneau_, May 07 2010
%E Maple program replaced by a structured general version - _R. J. Mathar_, May 10 2010