login
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=2.
2

%I #9 May 01 2013 21:13:45

%S 2,12,1122,3142,41521314,7162233415,91824344251617,

%T 12110253743526271819,1017114273845536472829,20211172931147546774839,

%U 3026120211314485561175859,50321232133164125761277869,603712821731741451061578879,8043130219319416512620711889

%N a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=2.

%C For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

%H J. Mulder, <a href="/A177361/b177361.txt">Table of n, a(n) for n = 1..25000</a>

%e Two; one two; one one, two twos; three ones, four twos; four ones, five twos, one three, one four; seven ones, six twos, two threes, three fours, one five; etc.

%Y Cf. A060857, A177359 - A177368

%K easy,nonn,base

%O 1,1

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, May 10 2010

%E Terms corrected using values in b-file. - _N. J. A. Sloane_, Oct 05 2010