login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177358
G.f. = (1+10*x-12*x^2-50*x^3+10*x^4+10*x^5-12*x^6)/(1-8*x-66*x^2+280*x^3+178*x^4-532*x^5-84*x^6+108*x^7).
0
1, 18, 198, 2442, 27396, 322238, 3676684, 42682364, 490330760, 5667610636, 65270671720, 753317707256, 8683177195608, 100163807669976, 1154904765618976, 13319816385434800, 153596409580655296
OFFSET
1,2
REFERENCES
S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
FORMULA
(1+10*x-12*x^2-50*x^3+10*x^4+10*x^5-12*x^6)/(1-8*x-66*x^2+280*x^3+178*x^4-532*x^5-84*x^6+108*x^7)
MATHEMATICA
CoefficientList[Series[(1+10x-12x^2-50x^3+10x^4+10x^5-12x^6)/(1-8x-66x^2+280x^3+178x^4- 532x^5-84x^6+108x^7), {x, 0, 20}], x] (* or *) LinearRecurrence[{8, 66, -280, -178, 532, 84, -108}, {1, 18, 198, 2442, 27396, 322238, 3676684}, 20] (* Harvey P. Dale, Aug 05 2023 *)
CROSSREFS
Sequence in context: A083812 A086573 A097515 * A026881 A181961 A250317
KEYWORD
nonn
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 07 2010
EXTENSIONS
Name edited by N. J. A. Sloane, Aug 05 2023
STATUS
approved