login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = 2^(prime(n) - prime(k)) mod prime(n), 1 <= k <= n.
8

%I #16 Apr 10 2024 03:32:49

%S 1,2,1,3,4,1,4,2,4,1,6,3,9,5,1,7,10,9,12,4,1,9,13,16,4,13,16,1,10,5,6,

%T 11,9,7,4,1,12,6,13,9,2,12,18,16,1,15,22,20,5,13,25,7,9,6,1,16,8,2,16,

%U 1,8,16,4,8,4,1,19,28,7,11,3,10,33,36,30,34,27,1,21,31,18,25,40,10,16,4,31,37,40,16,1

%N Triangle read by rows: T(n, k) = 2^(prime(n) - prime(k)) mod prime(n), 1 <= k <= n.

%H G. C. Greubel, <a href="/A177226/b177226.txt">Rows n = 1..50 of the triangle, flattened</a>

%F From _G. C. Greubel_, Apr 09 2024: (Start)

%F T(n, 1) = A111333(n).

%F T(n, 2) = A292411(n). (End)

%e Triangle begins:

%e 1;

%e 2, 1;

%e 3, 4, 1;

%e 4, 2, 4, 1;

%e 6, 3, 9, 5, 1;

%e 7, 10, 9, 12, 4, 1;

%e 9, 13, 16, 4, 13, 16, 1;

%e 10, 5, 6, 11, 9, 7, 4, 1;

%e 12, 6, 13, 9, 2, 12, 18, 16, 1;

%t Flatten[Table[PowerMod[2,Prime[n]-Prime[k],Prime[n]],{n,20},{k,n}]] (* _Harvey P. Dale_, May 10 2014 *)

%o (Magma)

%o A177226:= func< n,k | Modexp(2, NthPrime(n) - NthPrime(k), NthPrime(n)) >;

%o [A177226(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 09 2024

%o (SageMath)

%o def A177226(n,k): return pow(2, nth_prime(n) - nth_prime(k), nth_prime(n))

%o flatten([[A177226(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Apr 09 2024

%Y Cf. A000079, A111333, A173655, A174497, A174947, A174996, A292411.

%K nonn,tabl

%O 1,2

%A _Juri-Stepan Gerasimov_, Dec 10 2010

%E Corrected by _D. S. McNeil_, Dec 10 2010