login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177182
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=7, k=-1 and l=-1.
1
1, 7, 11, 67, 283, 1619, 8667, 50707, 296283, 1790163, 10921563, 67745043, 424241371, 2684071891, 17112955099, 109899184403, 710063310427, 4612990492883, 30113345315163, 197433924622099, 1299499526756827
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-1, l=-1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +9*(-n+3)*a(n-2) +(71*n-226)*a(n-3) +4*(-22*n+89)*a(n-4) +32*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
EXAMPLE
a(2)=2*1*7-2-1=11. a(3)=2*1*11-2+49-1-1=67.
MAPLE
l:=-1: : k := -1 : m:=7:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A177181.
Sequence in context: A067690 A358585 A196181 * A061809 A289286 A337099
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved