login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177162
Sequence defined by the recurrence formula a(n+1) = sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=0 and l=-1.
2
1, 6, 11, 57, 245, 1294, 6781, 37728, 213225, 1235908, 7267625, 43355213, 261455499, 1592057090, 9772992459, 60420010845, 375850271829, 2350842606832, 14775426937345, 93270580122351, 591082988357567, 3759155772624834
OFFSET
0,2
LINKS
FORMULA
G.f.: f(z) = (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-1).
D-finite with recurrence: (n+1)*a(n) = 2*(3*n-1)*a(n-1) - (27 - 11*n)*a(n-2) - 4*(10*n-31)*a(n-3) + 24*(n-4)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(5*sqrt(2)-3)*(4+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
EXAMPLE
a(2) = 2*1*6-1 = 11. a(3) = 2*1*11+6^2-1 = 57.
MAPLE
l:=-1: : k := 0 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
MATHEMATICA
Rest[CoefficientList[Series[-Sqrt[3*x+1]*Sqrt[8*x^2-8*x+1]/(2*Sqrt[1-x]), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 24 2012 *)
CROSSREFS
Sequence in context: A271119 A271299 A177197 * A152448 A289285 A073219
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved