login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (8*n+3)*(8*n+5).
2

%I #33 Oct 25 2024 14:36:57

%S 15,143,399,783,1295,1935,2703,3599,4623,5775,7055,8463,9999,11663,

%T 13455,15375,17423,19599,21903,24335,26895,29583,32399,35343,38415,

%U 41615,44943,48399,51983,55695,59535,63503,67599,71823,76175,80655,85263,89999,94863,99855

%N a(n) = (8*n+3)*(8*n+5).

%C Cf. comment of _Reinhard Zumkeller_ in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 64*A002061(n+1) - 49. - _Bruno Berselli_, Aug 24 2010

%H Vincenzo Librandi, <a href="/A177065/b177065.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 128*n + a(n-1) with n > 0, a(0)=15.

%F a(n) = A125169(A016754(n) - 1). - _Reinhard Zumkeller_, Jul 05 2010

%F a(0)=15, a(1)=143, a(2)=399, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Harvey P. Dale_, Mar 13 2013

%F G.f.: (15+98*x+15*x^2)/(1-x)^3. - _Vincenzo Librandi_, Apr 08 2013

%F From _Amiram Eldar_, Feb 19 2023: (Start)

%F a(n) = A017101(n)*A004770(n).

%F Sum_{n>=0} 1/a(n) = (sqrt(2)-1)*Pi/16.

%F Sum_{n>=0} (-1)^n/a(n) = (cos(Pi/8) * log(tan(3*Pi/16)) + sin(Pi/8) * log(cot(Pi/16)))/4.

%F Product_{n>=0} (1 - 1/a(n)) = sec(Pi/8)*cos(Pi/(4*sqrt(2))).

%F Product_{n>=0} (1 + 1/a(n)) = sec(Pi/8). (End)

%F E.g.f.: exp(x)*(15 + 64*x*(2 + x)). - _Elmo R. Oliveira_, Oct 25 2024

%p A177065:=n->(8*n+3)*(8*n+5): seq(A177065(n), n=0..100); # _Wesley Ivan Hurt_, Apr 24 2017

%t Table[(8n+3)(8n+5),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{15,143,399},40] (* _Harvey P. Dale_, Mar 13 2013 *)

%t CoefficientList[Series[(15 + 98 x + 15 x^2)/(1-x)^3, {x, 0, 50}], x] (* _Vincenzo Librandi_, Apr 08 2013 *)

%o (Magma) [(8*n+3)*(8*n+5): n in [0..50]]; // _Vincenzo Librandi_, Apr 08 2013

%o (PARI) a(n)=(8*n+3)*(8*n+5) \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A002061, A004770, A016754, A017101, A125169, A177059.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, May 31 2010

%E Edited by _N. J. A. Sloane_, Jun 22 2010