login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^3 - 3n^2 + 3.
2

%I #17 Apr 11 2022 12:59:47

%S 3,1,-1,3,19,53,111,199,323,489,703,971,1299,1693,2159,2703,3331,4049,

%T 4863,5779,6803,7941,9199,10583,12099,13753,15551,17499,19603,21869,

%U 24303,26911,29699,32673,35839,39203,42771,46549,50543,54759,59203

%N a(n) = n^3 - 3n^2 + 3.

%C For n>2, fourth diagonal of A162611.

%H B. Berselli, <a href="/A177058/b177058.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F From _Bruno Berselli_, Jun 04 2010: (Start)

%F G.f.: (3-11*x+13*x^2+x^3)/(1-x)^4.

%F a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0, with n>3.

%F a(n)+a(n-1) = 2*A081438(n-3), with n>2. (End)

%F G.f.: 3+x+x^2*G(0) where G(k) = 1 - x*(k+1)*(k+1)*(k+4)/(1 - 1/(1 - (k+1)*(k+1)*(k+4)/G(k+1))); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Oct 16 2012

%t Table[n^3-3n^2+3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{3,1,-1,3},50] (* _Harvey P. Dale_, May 15 2020 *)

%o (PARI) a(n)=n^3-3*n^2+3 \\ _Charles R Greathouse IV_, Jan 11 2012

%Y Cf. A162611, A081438.

%K sign,easy

%O 0,1

%A _Vincenzo Librandi_, May 27 2010