Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Apr 09 2020 23:49:40
%S 1,1,1,2,1,1,2,2,1,2,1,1,3,2,1,2,1,1,3,2,1,2,2,1,2,3,1,2,1,1,2,2,2,4,
%T 1,1,2,2,1,2,1,1,4,2,1,2,2,1,3,2,1,2,3,1,2,2,1,2,1,1,2,3,2,4,1,1,2,3,
%U 1,2,1,1,3,2,1,3,1,1,4,2,1,2,2,1,2,2,1,2,3,2,2,2,2,3,1,1,2,3
%N Number of ways to represent n as a polygonal number.
%C Frequency of n in the array A139601 or A086270 of polygonal numbers.
%C Since n is always n-gonal number, a(n) >= 1.
%C Conjecture: Every positive integer appears in the sequence.
%C Records of 2, 3, 4, 5, ... are reached at n = 6, 15, 36, 225, 561, 1225, ... see A063778. [_R. J. Mathar_, Aug 15 2010]
%D J. J. Tattersall, Elementary Number Theory in Nine chapters, 2nd ed (2005), Cambridge Univ. Press, page 22 Problem 26, citing Wertheim (1897)
%H T. D. Noe, <a href="/A177025/b177025.txt">Table of n, a(n) for n = 3..10000</a>
%H E. Deza and M. Deza, <a href="http://www.worldscientific.com/doi/suppl/10.1142/8188/suppl_file/8188_chap01.pdf">Figurate Numbers</a>, World Scientific, 2012; see p. 45.
%F a(n) = A129654(n) - 1.
%F G.f.: x * Sum_{k>=2} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - _Ilya Gutkovskiy_, Apr 09 2020
%p A177025 := proc(p)
%p local ii,a,n,s,m ;
%p ii := 2*p ;
%p a := 0 ;
%p for n in numtheory[divisors](ii) do
%p if n > 2 then
%p s := ii/n ;
%p if (s-2) mod (n-1) = 0 then
%p a := a+1 ;
%p end if;
%p end if;
%p end do:
%p return a;
%p end proc: # _R. J. Mathar_, Jan 10 2013
%t nn = 100; t = Table[0, {nn}]; Do[k = 2; While[p = k*((n - 2) k - (n - 4))/2; p <= nn, t[[p]]++; k++], {n, 3, nn}]; t (* _T. D. Noe_, Apr 13 2011 *)
%t Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]] - 1, {n, 3, 100}] (* _Jonathan Sondow_, May 09 2014 *)
%o (PARI) a(n) = sum(i=3, n, ispolygonal(n, i)); \\ _Michel Marcus_, Jul 08 2014
%o (Python)
%o from sympy import divisors
%o def a(n):
%o i=2*n
%o x=0
%o for d in divisors(i):
%o if d>2:
%o s=i/d
%o if (s - 2)%(d - 1)==0: x+=1
%o return x # _Indranil Ghosh_, Apr 28 2017, translated from Maple code by _R. J. Mathar_
%Y Cf. A129654, A139601, A090428, A176949, A176948, A176774, A176744, A176747, A176775, A175873, A176874.
%K nonn
%O 3,4
%A _Vladimir Shevelev_, May 01 2010
%E Extended by _R. J. Mathar_, Aug 15 2010