login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number m such that all the n numbers 1!*m+1, 2!*m+1, ..., n!*m+1 are prime.
1

%I #11 Mar 09 2018 12:13:33

%S 1,1,1,18,18,8628,748668,2506980,228698250,228698250

%N a(n) is the smallest number m such that all the n numbers 1!*m+1, 2!*m+1, ..., n!*m+1 are prime.

%e a(5)=18 because each of the five numbers 1!*18+1, 2!*18+1, 3!*18+1, 4!*18+1 and 5!*18+1 is prime, and 18 is the smallest such number.

%e The corresponding primes are:

%e n=1: 2;

%e n=2: 2, 3;

%e n=3: 2, 3, 7;

%e n=4: 19, 37, 109, 433;

%e n=5: 19, 37, 109, 433, 2161;

%e n=6: 8629, 17257, 51769, 207073, 1035361, 6212161;

%e n=7: 748669, 1497337, 4492009, 17968033, 89840161, 539040961, 3773286721;

%e ...

%o (PARI) okm(m, n) = {for (k=1, n, if (! isprime(k!*m+1), return (0));); return (1);}

%o a(n) = {m = 1; while(! okm(m, n), m++); m;} \\ _Michel Marcus_, Jun 08 2014

%Y Cf. A177013.

%K more,nonn

%O 1,4

%A _Enoch Haga_ and _Farideh Firoozbakht_, May 20 2010

%E a(10) corrected by _Jon E. Schoenfield_, Mar 07 2018