login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Prime numbers p such that p-LargestSquare is prime and p-LargestCube is also prime, (LargestSquare <= p, LargestCube <= p).
1

%I #6 Jul 03 2022 18:10:45

%S 3,11,19,67,71,83,107,227,263,269,613,619,1031,1061,1163,1193,1223,

%T 1307,1787,1801,1811,1831,1979,1997,2129,4099,4127,4133,4139,4157,

%U 4373,4409,4463,4637,4643,4703,5843,5849,5879,5903,6089,6101,6113,6143,6163,6211

%N Prime numbers p such that p-LargestSquare is prime and p-LargestCube is also prime, (LargestSquare <= p, LargestCube <= p).

%C 11-3^2=2;11-2^3=3, 19-4^2=3,19-2^3=11,..

%H Harvey P. Dale, <a href="/A176872/b176872.txt">Table of n, a(n) for n = 1..1000</a>

%t lst={};Do[p2=n-Floor[Sqrt[n]]^2;p3=n-Floor[n^(1/3)]^3;If[PrimeQ[p2]&&PrimeQ[p3]&&PrimeQ[n],AppendTo[lst,n]],{n,8!}];lst

%t plsplcQ[p_]:=AllTrue[{p-Floor[Sqrt[p]]^2,p-Floor[Surd[p,3]]^3},PrimeQ]; Select[ Prime[ Range[1000]],plsplcQ] (* _Harvey P. Dale_, Jul 03 2022 *)

%Y Cf. A135932, A176864, A176865, A176870, A176871

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Apr 27 2010