Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 08 2021 05:25:34
%S 1,-6,-6,36,64,36,-240,-600,-600,-240,1800,5760,8100,5760,1800,-15120,
%T -58800,-105840,-105840,-58800,-15120,141120,645120,1411200,1806336,
%U 1411200,645120,141120,-1451520,-7620480,-19595520,-30481920,-30481920,-19595520,-7620480,-1451520
%N Triangle T(n, k) = (-1)^n*(k+1)!*(n-k+1)!*binomial(n+2, k+2)*binomial(n+2, n-k+2) read by rows.
%C Row sums are: 1, -12, 136, -1680, 23220, -359520, 6201216, -118298880, ...
%D F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 270.
%H G. C. Greubel, <a href="/A176861/b176861.txt">Rows n = 0..100 of the triangle, flattened</a>
%F T(n, k) = (-1)^n*(k+1)!*(n-k+1)!*binomial(n+2, k+2)*binomial(n+2, n-k+2).
%F T(n, k) = (-1)^n * A132159(n+2, k+2) * A132159(n+2, n-k+2). - _G. C. Greubel_, Feb 07 2021
%e Triangle begins as:
%e 1;
%e -6, -6;
%e 36, 64, 36;
%e -240, -600, -600, -240;
%e 1800, 5760, 8100, 5760, 1800;
%e -15120, -58800, -105840, -105840, -58800, -15120;
%e 141120, 645120, 1411200, 1806336, 1411200, 645120, 141120;
%t T[n_, k_]:= (-1)^n*(k+1)!*(n-k+1)!*Binomial[n+2, k+2]*Binomial[n+2, n-k+2];
%t Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
%o (Sage) flatten([[(-1)^n*factorial(k+1)*factorial(n-k+1)*binomial(n+2, k+2)*binomial(n+2, n-k+2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 07 2021
%o (Magma) [(-1)^n*Factorial(k+1)*Factorial(n-k+1)*Binomial(n+2, k+2)*Binomial(n+2, n-k+2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 07 2021
%Y Cf. A132159.
%K sign,tabl,easy,less
%O 0,2
%A _Roger L. Bagula_, Apr 27 2010
%E Edited by _G. C. Greubel_, Feb 07 2021