login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p^3 = q//3 for a prime q, where "//" denotes concatenation.
2

%I #24 Sep 03 2021 13:54:57

%S 17,157,257,277,397,677,877,997,1217,1697,1997,2417,2777,3257,3517,

%T 3697,4157,4177,5077,5197,5897,6277,7417,7517,8377,9397,9497,9677,

%U 9857,11197,11597,12157,12457,12697,13397,13477,13877,14057,14197,15017,16477,17597,18097

%N Primes p such that p^3 = q//3 for a prime q, where "//" denotes concatenation.

%C Diophantine equation p^3 = 10 * q + 3 with side condition p and q prime. Necessarily the LSD for such primes p is e = 7 and the two least significant digit strings are "17", "57", "77" or "97".

%D J.-P. Allouche and J. Shallit, Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, 2003.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford University Press, 1980.

%D F. Padberg, Zahlentheorie und Arithmetik, Spektrum Akademie Verlag, Heidelberg - Berlin 1999.

%H Harvey P. Dale, <a href="/A176838/b176838.txt">Table of n, a(n) for n = 1..1000</a>

%e 17^3 = 4913 = prime(94)//3, 17 = prime(7) is the first term.

%e 157^3 = 3869893 = prime(32838)//3, 157 = prime(37) is the second term.

%p q:= n-> isprime(iquo(n^3, 10, 'd')) and d=3:

%p select(q, [ithprime(i)$i=1..3000])[]; # _Alois P. Heinz_, Sep 03 2021

%t Select[Range[7,20000,10],PrimeQ[#]&&PrimeQ[FromDigits[Most[IntegerDigits[ #^3]]]]&] (* _Harvey P. Dale_, Oct 03 2013 *)

%o (Python)

%o from sympy import isprime, primerange

%o def ok(p): q, r = divmod(p**3, 10); return r == 3 and isprime(q)

%o print(list(filter(ok, primerange(2, 18200)))) # _Michael S. Branicky_, Aug 31 2021

%o (PARI) isok(p) = if (isprime(p), my(v=divrem(p^3,10)); isprime(v[1]) && (v[2] == 3)); \\ _Michel Marcus_, Sep 03 2021

%Y Cf. A000040, A000578, A174979.

%K base,nonn

%O 1,1

%A Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2010