Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #2 Mar 30 2012 18:40:52
%S 2,30205,133050536,1713435083707,12173043638400828,
%T 151229306063970112979,1815272942608097141328160,
%U 16183327444272811414262846321,331634334544577293143126414662454
%N Partial sums of A047076.
%C Partial sums of a(n+1) is the smallest palindromic prime containing exactly 2 more digits on each end than the previous term, with a(n) as a central substring. Can this partial sum ever be a palindromic prime?
%F a(n) = SUM[i=1..n] A047076(i).
%e a(8) = 2 + 30203 + 133020331 + 1713302033171 + 12171330203317121 + 151217133020331712151 + 1815121713302033171215181 + 16181512171330203317121518161 = 16183327444272811414262846321 is prime
%Y Cf. A047076, A046485.
%K base,nonn
%O 1,1
%A _Jonathan Vos Post_, Apr 25 2010