OFFSET
0,1
COMMENTS
Since the formula can be factored, there are no primes in this sequence.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 384 for n > 3; a(0)=21, a(1)=285, a(2)=1365, a(3)=4221.
G.f.: 3*(7 + 60*x + 50*x^2 + 12*x^3 - x^4)/(1 - x)^5.
a(n) = (2*n + 1)*(2*n + 3)*(4*n^2 + 8*n + 7). - corrected by Eric Rowland, Aug 15 2017
a(n) = a(-n-2). - Bruno Berselli, Sep 05 2011
MATHEMATICA
Table[16n^4+64n^3+104n^2+80n+21, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {21, 285, 1365, 4221, 10197}, 30] (* Harvey P. Dale, Jan 15 2015 *)
PROG
(Magma) [ 16*n^4+64*n^3+104*n^2+80*n+21: n in [0..28] ];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 24 2010
STATUS
approved