login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A176640
Partial sums of A005985.
0
0, 1, 5, 14, 46, 111, 303, 688, 1712, 3761, 8881, 19122, 43698, 92851, 207539, 436916, 961204, 2009781, 4369077, 9087670, 19573430, 40544951, 86682295, 178956984, 380283576, 782936761, 1655351993, 3400182458, 7158278842
OFFSET
0,3
COMMENTS
Partial sums of length of longest walk on edges of n-cube. The subsequence of primes in this partial sum begins: 5, 3761, 40544951.
FORMULA
a(n) = SUM[i=0..n] A005985(i).
Empirical G.f.: x*(1+2*x-4*x^2+4*x^3)/((1-x)^2*(1+x)*(1-2*x)^2*(1+2*x)). [Colin Barker, Jan 14 2012]
a(0)=0, a(1)=1, a(2)=5, a(3)=14, a(4)=46, a(5)=111, a(n)=3*a(n-1)+ 3*a(n-2)- 15*a(n-3)+ 6*a(n-4)+12*a(n-5)-8*a(n-6). - Harvey P. Dale, Jun 11 2015
EXAMPLE
a(21) = 0 + 1 + 4 + 9 + 32 + 65 + 192 + 385 + 1024 + 2049 + 5120 + 10241 + 24576 + 49153 + 114688 + 229377 + 524288 + 1048577 + 2359296 + 4718593 + 10485760 + 20971521 = 40544951 is prime.
MATHEMATICA
Accumulate[LinearRecurrence[{2, 5, -10, -4, 8}, {0, 1, 4, 9, 32}, 40]] (* or *) LinearRecurrence[{3, 3, -15, 6, 12, -8}, {0, 1, 5, 14, 46, 111}, 40] (* Harvey P. Dale, Jun 11 2015 *)
CROSSREFS
Cf. A005985.
Sequence in context: A270620 A270636 A077335 * A126729 A336006 A098730
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Apr 22 2010
STATUS
approved