login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176621
a(n) = 2 + Sum_{k=0..n-1} A176513(4*k+1).
2
2, 3, 4, 11, 40, 157, 656, 2721, 11346, 47337, 197398, 823451, 3434718, 14326815, 59760224, 249271079, 1039759044, 4337038713, 18090636780, 75459593981, 314756746798, 1312912064069, 5476413466674, 22843193551799, 95283436047290
OFFSET
0,1
COMMENTS
Old name was "a(n) is the minimum number that can be expressed as the sum of n terms of sequence A176513".
Lim_{n -> infinity} a(n+1)/a(n) = s^4 = 4.17119593178..., where s is the root of the characteristic equation s^5 = s^3 + s^2 + 1.
FORMULA
From Jianing Song, Feb 04 2019: (Start)
a(n+5) = 2*a(n+4) + 7*a(n+3) + 9*a(n+2) - 2*a(n+1) + a(n) - 32.
a(n+6) = 3*a(n+5) + 5*a(n+4) + 2*a(n+3) - 11*a(n+2) + 3*a(n+1) - a(n). (End)
MATHEMATICA
LinearRecurrence[{3, 5, 2, -11, 3, -1}, {2, 3, 4, 11, 40, 157}, 50]
PROG
(PARI) a(n) = my(v=vector(n+1), u=[2, 3, 4, 11, 40]); for(k=1, n+1, v[k]=if(k<=5, u[k], 2*v[k-1] + 7*v[k-2] + 9*v[k-3] - 2*v[k-4] + v[k-5] - 32)); v[n+1] \\ Jianing Song, Feb 04 2019
(Magma) I:=[2, 3, 4, 11, 40, 157]; [n le 6 select I[n] else 3*Self(n-1) +5*Self(n-2) +2*Self(n-3) -11*Self(n-4) +3*Self(n-5) -Self(n-6): n in [1..51]]; // G. C. Greubel, Jul 01 2021
(Sage)
@CachedFunction
def b(n): return 1 if (n<6) else b(n-2) + b(n-3) + b(n-5) # b=A176513
def a(n): return 2 + sum(b(4*j+1) for j in (0..n-1))
[a(n) for n in (0..50)] # G. C. Greubel, Jul 01 2021
CROSSREFS
Cf. A176513.
Sequence in context: A221172 A116054 A339782 * A370365 A099527 A354371
KEYWORD
nonn,easy
AUTHOR
Carmine Suriano, Apr 22 2010
EXTENSIONS
New name, a(0) = 2 prepended and a(1), a(2) corrected by Jianing Song, Feb 04 2019
Term a(11) corrected by G. C. Greubel, Jul 01 2021
STATUS
approved