login
The numerator of the n-th term of the inverse binomial transform of the sequence 0, 1, 0, B_2, B_3, B_4, .. of modified Bernoulli numbers.
3

%I #5 Mar 30 2012 18:52:05

%S 0,1,-2,19,-14,199,-137,851,-548,4121,-2533,67451,-40078,404869,

%T -234967,1655047,-940136,32428087,-18383711,439693871,-235204778,

%U -724823111,352226881,260572074487,-130542594044,-6002444699183,3000757572779

%N The numerator of the n-th term of the inverse binomial transform of the sequence 0, 1, 0, B_2, B_3, B_4, .. of modified Bernoulli numbers.

%C The starting sequence contains the terms A176327(.)/A176591(.) prefixed with a single zero (which occupies the term at index zero), basically 0, 1, 0 followed by the Bernoulli numbers without B_0 and B_1.

%C Its inverse binomial transform is 0, 1, -2, 19/6, -14/3, 199/30, -137/15, 851/70, -548/35, 4121/210, -2533/105, 67451/2310, -40078/1155, 404869/10010, -234967/5005, 1655047/30030,.. and taking numerators defines the current sequence.

%C The denominators of the transformed sequence appear to be A172031, checked up to A176618(33).

%p read("transforms") ;

%p evb := [0, 1, 0, seq(bernoulli(n), n=2..50)] ;

%p ievb := BINOMIALi(evb) ;

%p apply(numer,%) ;

%K frac,sign

%O 0,3

%A _Paul Curtz_, Apr 22 2010