Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 19 2021 10:14:07
%S 1,1,3,8,23,72,239,825,2929,10624,39193,146587,554535,2118042,8156595,
%T 31635298,123462515,484483902,1910465543,7566438417,30084771297,
%U 120044573286,480550302501,1929362833770,7767140703837,31346346634338
%N Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=0 and l=1.
%F G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
%F Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +8*(-n+3)*a(n-3) +4*(n-4)*a(n-4)=0. - _R. J. Mathar_, Feb 29 2016
%F a(n) = Sum_{k=0..n}((C(k)*Sum_{j=0..(n-k)/2}(binomial(k+1,j)*binomial(n-k-j-1,n-k-2*j)))), where C(n) is Catalan numbers (A000108). - _Vladimir Kruchinin_, Apr 15 2016
%e a(2)=(1*1+0)+(1*1+0)+1=3. a(3)=1*3+1^1+3*1+1=8. a(4)=2*1*8+2*1*3+1=23.
%p l:=1: : k := 0 : m:=1:d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k,p=0..n)+l:od :
%p taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z),z=0,31);seq(d(n),n=0..29);
%t Table[Sum[(Binomial[2 k, k] Sum[Binomial[k + 1, j] Binomial[n - k - j - 1, n - k - 2 j], {j, 0, (n - k)/2}])/(k + 1), {k, 0, n}], {n, 0, 25}] (* _Michael De Vlieger_, Apr 15 2016 *)
%o (Maxima)
%o a(n):=sum((binomial(2*k,k)*sum(binomial(k+1,j)*binomial(n-k-j-1,n-k-2*j),j,0,(n-k)/2))/(k+1),k,0,n); /* _Vladimir Kruchinin_, Apr 15 2016 */
%Y Cf. A176604.
%K nonn
%O 0,3
%A _Richard Choulet_, Apr 21 2010