login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5^(2^n).
8

%I #30 Jan 29 2021 04:48:08

%S 5,25,625,390625,152587890625,23283064365386962890625,

%T 542101086242752217003726400434970855712890625,

%U 293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625

%N a(n) = 5^(2^n).

%C Also the hypotenuse of primitive Pythagorean triangles obtained by repeated application of basic formula c(n)=p(n)^2+q(n)^2 starting p(0)=2, q(0)=1, see A100686, A098122. Example: a(2)=25 since starting (2,1) gives Pythagorean triple (3,4,5) using (3,4) as new generators gives triple (7,24,25) hypotenuse 25=a(2). - _Carmine Suriano_, Feb 04 2011

%F a(n) = A165423(n+3).

%F a(n+1) = a(n)^2 with a(0)=5.

%F a(n-1) = (Im((2+i)^(2^n))^2 + Re((2+i)^(2^n))^2)^(1/2). - _Carmine Suriano_, Feb 04 2011

%F Sum_{n>=0} 1/a(n) = A078886. - _Amiram Eldar_, Nov 09 2020

%F Product_{n>=0} (1 + 1/a(n)) = 5/4. - _Amiram Eldar_, Jan 29 2021

%o (PARI) a(n) = 5^(2^n); \\ _Michel Marcus_, Jan 26 2016

%Y Cf. A001146, A011764, A078886, A098122, A100686, A165423.

%Y Cf. A185457, A120905, A139011. - _Carmine Suriano_, Feb 04 2011

%K nonn

%O 0,1

%A _Vincenzo Librandi_, Apr 21 2010

%E Offset corrected by _R. J. Mathar_, Jun 18 2010