login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form semiprime(k)/sum of digits of semiprime(k).
1

%I #15 Aug 10 2023 11:06:07

%S 7,37,19,67,19,19,37,37,73,37,73,337,367,163,73,109,127,73,109,163,

%T 127,181,163,433,181,163,199,181,271,163,199,199,271,271,397,307,307,

%U 487,379,541,433,577,397,271,631,433,379,487,919,1459,541,937,811,631,991

%N Primes of the form semiprime(k)/sum of digits of semiprime(k).

%H Harvey P. Dale, <a href="/A176544/b176544.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = p = A001358(n)/A175013(n).

%F a(n) = A001358(A176543(n))/A175013(A176543(n)). - _R. J. Mathar_, Apr 26 2010

%e 7 is a term because 7 = 21/(2+1);

%e 37 is a term because 37 = 111/(1+1+1).

%p A175013 := proc(n) A007953(A001358(n)) ; end proc: A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: for n from 1 to 4000 do r := A001358(n)/A175013(n) ; if type(r,'integer') then if isprime(r) then printf("%d,",r) ; end if; end if; end do: # _R. J. Mathar_, Apr 26 2010

%t Select[#/Total[IntegerDigits[#]]&/@Select[Range[30000],PrimeOmega[#]==2&],PrimeQ] (* _Harvey P. Dale_, Aug 10 2023 *)

%Y Cf. A001358 (semiprimes), A007953 (sum of digits), A175013, A176543.

%K nonn,base

%O 1,1

%A _Juri-Stepan Gerasimov_, Apr 20 2010

%E More terms from _R. J. Mathar_, Apr 26 2010