login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fermi-Dirac semiprimes: products of two distinct terms of A050376.
6

%I #23 Oct 31 2023 19:21:14

%S 6,8,10,12,14,15,18,20,21,22,26,27,28,32,33,34,35,36,38,39,44,45,46,

%T 48,50,51,52,55,57,58,62,63,64,65,68,69,74,75,76,77,80,82,85,86,87,91,

%U 92,93,94,95,98,99,100,106,111,112,115,116,117,118,119,122

%N Fermi-Dirac semiprimes: products of two distinct terms of A050376.

%C The sequence essentially differs from A000379 beginning with a(108)=212 (not 210). All squarefree terms of A001358 are in the sequence.

%D Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences, Vol. 4 (1996), pp. 28-43 [Russian].

%H Peter J. C. Moses, <a href="/A176525/b176525.txt">Table of n, a(n) for n = 1..10000</a>

%H Simon Litsyn and Vladimir S. Shevelev, <a href="http://www.emis.de/journals/INTEGERS/papers/h33/h33.Abstract.html">On factorization of integers with restrictions on the exponent</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, Vol. 7 (2007), Article #A33, pp. 1-36.

%F If a(n)=u*v, u<v, u,v are distinct terms of A050376 "Fermi-Dirac primes", then A064380(a(n))=a(n)-u-v+1+Sum{i>=1}(-1)^(i-1)*floor(v/u^i).

%t Select[Range[120], Plus @@ DigitCount[Last /@ FactorInteger[#], 2, 1] == 2 &] (* _Amiram Eldar_, Nov 27 2020 *)

%Y Cf. A001358, A050376, A000379, A176472, A176509, A064380, A050292.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Apr 19 2010, Apr 20 2010

%E Effectively duplicate content (due to duplicate referenced sequence) removed by _Peter Munn_, Dec 19 2019